(z^2-2iz)*(z^2+25)=0

Simple and best practice solution for (z^2-2iz)*(z^2+25)=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (z^2-2iz)*(z^2+25)=0 equation:


Simplifying
(z2 + -2iz)(z2 + 25) = 0

Reorder the terms:
(-2iz + z2)(z2 + 25) = 0

Reorder the terms:
(-2iz + z2)(25 + z2) = 0

Multiply (-2iz + z2) * (25 + z2)
(-2iz * (25 + z2) + z2(25 + z2)) = 0
((25 * -2iz + z2 * -2iz) + z2(25 + z2)) = 0
((-50iz + -2iz3) + z2(25 + z2)) = 0
(-50iz + -2iz3 + (25 * z2 + z2 * z2)) = 0
(-50iz + -2iz3 + (25z2 + z4)) = 0
(-50iz + -2iz3 + 25z2 + z4) = 0

Solving
-50iz + -2iz3 + 25z2 + z4 = 0

Solving for variable 'i'.

Move all terms containing i to the left, all other terms to the right.

Add '-25z2' to each side of the equation.
-50iz + -2iz3 + 25z2 + -25z2 + z4 = 0 + -25z2

Combine like terms: 25z2 + -25z2 = 0
-50iz + -2iz3 + 0 + z4 = 0 + -25z2
-50iz + -2iz3 + z4 = 0 + -25z2
Remove the zero:
-50iz + -2iz3 + z4 = -25z2

Add '-1z4' to each side of the equation.
-50iz + -2iz3 + z4 + -1z4 = -25z2 + -1z4

Combine like terms: z4 + -1z4 = 0
-50iz + -2iz3 + 0 = -25z2 + -1z4
-50iz + -2iz3 = -25z2 + -1z4

Reorder the terms:
-50iz + -2iz3 + 25z2 + z4 = -25z2 + 25z2 + -1z4 + z4

Combine like terms: -25z2 + 25z2 = 0
-50iz + -2iz3 + 25z2 + z4 = 0 + -1z4 + z4
-50iz + -2iz3 + 25z2 + z4 = -1z4 + z4

Combine like terms: -1z4 + z4 = 0
-50iz + -2iz3 + 25z2 + z4 = 0

Factor out the Greatest Common Factor (GCF), 'z'.
z(-50i + -2iz2 + 25z + z3) = 0

Subproblem 1

Set the factor 'z' equal to zero and attempt to solve: Simplifying z = 0 Solving z = 0 Move all terms containing i to the left, all other terms to the right. Add '-1z' to each side of the equation. z + -1z = 0 + -1z Remove the zero: 0 = -1z Simplifying 0 = -1z The solution to this equation could not be determined. This subproblem is being ignored because a solution could not be determined.

Subproblem 2

Set the factor '(-50i + -2iz2 + 25z + z3)' equal to zero and attempt to solve: Simplifying -50i + -2iz2 + 25z + z3 = 0 Solving -50i + -2iz2 + 25z + z3 = 0 Move all terms containing i to the left, all other terms to the right. Add '-25z' to each side of the equation. -50i + -2iz2 + 25z + -25z + z3 = 0 + -25z Combine like terms: 25z + -25z = 0 -50i + -2iz2 + 0 + z3 = 0 + -25z -50i + -2iz2 + z3 = 0 + -25z Remove the zero: -50i + -2iz2 + z3 = -25z Add '-1z3' to each side of the equation. -50i + -2iz2 + z3 + -1z3 = -25z + -1z3 Combine like terms: z3 + -1z3 = 0 -50i + -2iz2 + 0 = -25z + -1z3 -50i + -2iz2 = -25z + -1z3 The solution to this equation could not be determined. This subproblem is being ignored because a solution could not be determined. The solution to this equation could not be determined.

See similar equations:

| 3x+3=-25 | | -11=s+5 | | (-11)=13+x | | 15/25=y/30 | | (-15)+g=(-5) | | (2c+9)(c+5)= | | f(x)=6x^3+8x^2+3 | | 6(1-2x)-x=-46 | | B-17=-38 | | 6+2x=5-(7x) | | J+13=37 | | a^2+4ab+4b^2=0 | | M+(-10)=(-2) | | -3a+8=2 | | 4x-3y=52 | | (-17)=(-9)+q | | f(x)=a^3-3a^2-9 | | 2.25=3/4(b-5) | | 17+n=4 | | 6x-x^2+16= | | (-22)+j=(-24) | | 72.8=7(m+3.1) | | 4x+23=75 | | (2c+9)x(c+5)= | | 3[m-1.2]=9 | | h-8+2(h-8)=72 | | 47=19-4x | | 39+x=30+2x | | R-20+4=18 | | 1521=39p+390 | | M+52=53 | | 14y+6(4-8y)= |

Equations solver categories